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LIQUID CRYSTALS, 1989, VOL. 5, No. 6, 1647-1658 

Invited Lecture 
Hats and saddles in lipid membranes 

by W. HELFRICH 
Fachbereich Physik, Freie Universitat Berlin, Arnimallee 14, D- 1000 Berlin 33, 

F.R. Germany 

Extrinsic or  intrinsic defects in membranes may produce deformations resem- 
bling hats or saddles. It is shown that hats cannot absorb much area without 
reducing the bending rigidity of the membrane below erg. Estimates indicate 
that intrinsic saddles are promoted by the stress profile of electrically neutral 
biological model membranes. The saddle structures might warp the membrane if 
they cooperate. 

1. Introduction 
Fluid lipid bilayers are normally regarded as smooth surfaces deviating from 

an approximately planar configuration only through their thermal undulations. 
This applies in particular to the rather stiff biological model membranes made 
of the phospholipids and glycolipids occurring abundantly in animal and vegetable 
cell membranes. However, it was noted some time ago by Gruler [ I ]  that cone-like 
objects represented by proteins may produce conical deformations in otherwise flat 
bilayers. More recently, Leibler [2] contemplated theoretically a curvature instability 
of membranes which may arise if conical objects interact attractively with each 
other. 

Today there is reason to believe that three classes of biological model membranes 
phosphatidylcholines [3], phosphotidylethanolamines [4] and digalactosyldiglycerides 
[5 ] ,  are much rougher than they appear under the light microscope. A number of 
measurements suggest that the ratio of real to visible membrane area is substan- 
tially larger than that expected on the basis of their undulations. Any additional 
area would have to be accommodated by an as yet unknown submicroscopic 
roughness. 

It is therefore of interest to examine the deformations associated with extrinsic and 
intrinsic defects in the membrane. The word defect is employed here in a very broad 
sense. It includes extraneous molecules, structural defects and regions of very high 
curvature whose formation is significantly promoted by a breakdown of regular 
elasticity. Considering disturbances of the surface that resemble a hat or a saddle, we 
discuss which defects they need for their formation and how they affect membrane 
properties. Before that, thermal undulations are newly treated in terms of bending 
fluctuations of slightly curved discs. The new description, which gives the same results 
as the standard description, is advantageous in dealing with hats. We also look 
into the possibility of extending the concept of hats and saddles to lyotropic and 
thermotropic smectic liquid crystals. 
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1648 W. Helfrich 

2. Slightly curved discs 
The curvature-elastic energy per unit area of a symmetric fluid membrane may be 

written as [6] 

g = $K(C,  + CJZ + j i C I C 2 ,  (1) 

where c, and c2 are the principal curvatures (inverse principal radii of curvature), 
K is the bending rigidity and K- the elastic modulus of Gaussian curvature. We use as 
abbreviations two classical denotations of differential geometry: mean curvature 

H = +(cI + C )  2 (2) 

K = cIc2.  (3) 

The second term in equation ( I )  is generally omitted in dealing with bending fluctu- 
ations, since the integral of Kdepends only on the genus of the surface (Gauss-Bonnet 
theorem). 

and Gaussian curvature 

Figure 1. Artificial division of nearly flat membrane into discs as seen from above. 

Thermal undulations are usually analysed by means of a Fourier expansion of the 
displacement u = u(x, y )  of the membrane from the xy plane [7]. The modes are 
coupled with respect to their bending energies if everywhere Jgrad uI + 1. Here we 
take an entirely different route. The membrane is mentally divided into pieces, e.g. a 
lattice of hexagons or, approximatively, circles as shown in figure 1. (The construction 
helps our reasoning; it is not really possible on a curved surface.) The discs are 
characterized by a radius r, and a uniform mean curvature Hd fluctuating around 
zero. In the absence of Gaussian curvature the disc is identical to a segment of a 
sphere. Its mean curvature can be expressed through the polar angle 9, of its edge and 
its radius rd: 

Hd = 9d/rd (4) 
provided + 1. We assume that any given disc produces only Gaussian curvature 
in the rest of the membrane (see below for details). The equipartition theorem for the 
single disc is then 

where k, is Boltzmann’s constant and T is temperature. Because of equation (4) we 
may rewrite this in the form 

(9;) = kBT/4mc. (6) 

It is possible, as long as Jgrad UJ 6 1, to do a Fourier expansion of 2H in sinusoidal 
waves such as cq cos (qxx,  qyy). With the usual periodic boundary conditions and 
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Invited Lecture: Huts and saddles in lipid membranes 1649 

observing q c: I,+,, one obtains from statistical mechanics 

(7) 
1 <ci> = 2((2Hd)2) - 3  

Nd 

where Nd is the total number of discs. Insertion of equations (5) and (6) and intro- 
ducing the total membrane area 

lead to 

This is a familiar form of the equipartition theorem, especially with the substitution 
cq = q2u,, which confirms the validity of the model starting from local fluctuations. 

Equation (6) relates the edge angle of the disc to the stiffness of the membrane. For 
the bending rigidity u = 1 x lo-” erg, which seems to be typical of biological model 
membranes [5,8,9], and k,T = 4 x 10-I4erg (room temperature) one obtains 
((9;))’’’ = 3.2”. It is interesting to note that we are free, in this particular calculation, 
to choose for the disc any size above the molecular cross section. This demonstrates 
the well-known scale invariance of the thermal undulations of fluid membranes. 

We wish to calculate the membrane area absorbed by fluctuations in the model of 
curved discs. The ratio of real to projected area is larger than unity whenever the 
membrane, thought to be unstretchable, is not parallel to its basal plane. The local 
value of the ratio may be expressed by 

as long as /grad u J  < 1. In order to derive the absorbed area associated with a single 
disc we may start from a formula for axisymmetric shapes with vanishing bending 
energy, i.e. with H = 0, which was derived earlier [lo], 

u = uo - ro ln{r/ro + [(r,’rO)’ - I)]”*}, (10) 

where u is the displacement in the z direction and r the radius. The height is u = u0 
at r = ro where the membrane turns over, making an angle of 90” with the xy plane. 
It follows from the general solution (10) that we may write, for r 2 r,, 

which is exact if 19,1 < 1. (It may also be seen directly that equation (1 I )  satisfies 
H = 0 sufficiently well.) Apart from the contribution of the disc itself, one has for the 
mean extra area AAd associated with the disc 

Like u of equation (lo), AA, diverges logarithmically with the outer radius R which 
serves as a measure for the size of the system. Employing superposition to obtain the 
total area AA absorbed by bending fluctuations, one finds because of equation (6) for 
the relative increase 
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1650 W. Helfrich 

Again, the formula is identical to that calculated with the standard method [7]. For 
an  estimate we use in addition to the above numbers rd = 1 nm and R = IOpm, 
which are a molecular length and a typical vesicle size, respectively. The result is 
AAIA = 0.03. 

3. Hats 
Bending fluctuations of a membrane may also result from conical defects. Let us 

consider the idealized case where the latter are the only origin of curvature. Extrinsic 
defects of any desired type may be provided by suitable proteins and other biomolecules 
embedded in one or both of the monolayers. Intrinsic defects are not so easy to 
imagine, but are required in a membrane consisting of a single species of molecules. 
In connection with hats, one can think of thermal pores with a tendency to form 
funnels [ l l ,  121. Alternatively, there could be a breakdown of regular bending elasticity 
at very high spherical curvature. It may be expressible by additional terms of the 
bending elastic energy which are of higher than quadratic order in the curvature [ 131. 
The defects should not be so dominant as to  destroy the planar membrane, e.g. by 
transforming it into small vesicles. Accordingly, we prefer the idea of thermally 
excited hats whose energy is much lower than expected on the basis of equation (I), 
but definitely positive. 

, 2  r - - - i  

4 2 r , l c  

Figure 2. Cross section of an axisymmetric hat of inner radius r, . The broken box frames the 
(unknown) central part. 

A single conical defect will produce a hat as sketched in figure 2. The top of the 
hat, being controlled by the defect, is considered a ‘black box’ and ignored in the 
following. Outside the inner radius ri of the hat, the membrane contour satisfies 
equation (10). The outer radius rh of the hat is defined by 

~4 = A/Nh,  (14) 
where Nh is the total number of hats. We choose this definition because we expect the 
collection of hats to be similar in some respects to an area-filling system of the same 
number of slightly curved discs. The tilt angle cp of the membrane in the presence of 
a single hat obeys, because of equation (lo), 

P = cp,r,/r, (15) 
where cp, is the angle at r , .  In this approximation (which becomes poor if IcpII 2 1) the 
edge angle of the discs belonging to the hats is obviously given by 

(9;) = 9; = cPf(r,/rtJ* (16) 
If the hats are free to move and point upwards and downwards with equal probability, 
they make the membrane in effect flexible. Treating them as discs, we write down the 
inverse of the defect-mediated flexibility which is a rigidity 
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Invited Lecture: Hats and saddles in lipid membranes 1651 

If the membrane is flexible by itself with some rigidity, the total rigidity is, of course, 
calculated by adding flexibilities. According to equation (1 3) the membrane area 
absorbed by a single hat is given by 

R 
ri 

AAh = zncp’r2ln--, 

which implies for a system of hats the relative increase 

In order to have a large relative increase, say AA/A = 0.3, we start from 
cpi = 1, which seems to be a kind of maximum. Equation (19) and InR/r, = 10 
(see above) then require r i l e  = 30. Inserting this ratio, Incpi l  = 1, and k,T = 
4 x erg into equation (17) results in xdef = 1 x 1 0 - l ~  erg. It may also be 
generally seen by eliminating cp? r2 /ri between equations (1 7) and (1 9) that any 
substantial increase of‘ AA/A above the value of 0.03 estimated for undulations would 
be linked with a corresponding decrease of the total rigidity below 1 x erg. This 
rules out hats as a mechanism to absorb much area in membranes of this rigidity. 
From a general point of view, however, it is interesting to note that relatively small 
concentrations of hats can lower the rigidity quite effectively. An estimate based 
on equation (17) and employing ri = lop6 cm (the minimum radius of sonicated 
vesicles), cp, = 1, and Kdef = lo-’* erg yields Ah = zri = 1 0 - ~  cm’. 

4. Saddles 
Saddles caused or promoted by defects and the deformation of their surroundings 

are difficult to deal with. We can treat them only by way of rather crude estimates. 
However, saddle structures are potentially very interesting because of their mutual 
interaction. Saddles could be created by sufficiently large saddle-shaped molecules 
residing in the membrane. Here we focus on a possible intrinsic mechanism which 
promotes saddle curvature in fluid membranes of a certain type. A single saddle 
structure embedded in a flat membrane is sketched in figure 3. The central part is a 
region of membrane with mostly saddle curvature, i.e. negative Gaussian curvature. 
For pure saddle curvature we have K = -c2 ,  the principal curvatures being 
c, = - c2 = c. According to the theory of minimal surfaces, pure saddle curvature 
cannot be constant over extended areas. The formation of the saddle should release 
a substantial part of the energy needed to form the necessary highs and lows which, 
in contrast to the centre, have a distinct mean curvature. 

H 

I 
I 

Figure 3. Saddle structure consisting of a central saddle (S), two highs (H) and two lows (L). 
Top view and cross section through the lows. 
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1652 W. Helfrich 

The negative deformational energy cannot come from a positive Ic since negative 
Gaussian curvature in one region is compensated by positive Gaussian curvature 
elsewhere. However, one may find the desired negative energy by considering the 
modulus of K2, i.e. of a fourth power of curvatures, in the elastic energy of membranes 
with Ic > 0. (All of the fourth order terms were given some time ago by Mitov [13].) 
In order to show this, we start from 

which equates the modulus of Gaussian curvature to the second moment of the stress 
profile of the membrane [14]. Being the normal stress (dyncm-’) along a vertical cut 
through the membrane, s(z) is isotropic in the plane of a fluid membrane. The zeroth 
and the first moments are assumed to vanish because of equilibrium and symmetry, 
respectively. It is convenient in the following calculations to have the xy plane locally 
coincide with the middle surface of the membrane. 

The physical meaning of equation (20) is easy to understand: negative Gaussian 
curvature K = -c2  produces a relative decrease of the membrane area at the 
height ) z  by c2z2 so that IcK represents the integrated work done against the 
stresses of the flat membrane. Any horizontal contraction or dilatation of the 
membrane as a whole to minimize deformational energy contributes in higher order 
of K (see below). 

z 

Figure 4. Most widely accepted type of stress profile of electrically neutral biological 
model membranes. 

The stress profile to be expected for electrically neutral biological model membranes 
such as those initially listed is.shown schematically in figure 4. It is characterized by 
pull in the region of the polar heads, where the interfacial tension between oil and 
water acts, and by push in the region of the hydrocarbon chains, which are preferen- 
tially aligned parallel to the layer normal. A pure saddle curvature (- K )  = c2 is 
likely to thicken the membrane, since the bulk density of the lipid should be practically 
constant under bending deformations. In order to calculate the thickening we take, 
at least for the moment, the middle surface of the membrane to be the area of 
inextension as in figure 5. If the lipid density is indeed constant, we have to move mass 
originally at ) z to rir Z according to 

Z(1 + + K P )  = 2 ,  (21) 
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Invited Lecture: Hats and saddles in lipid membranes 1653 

I ‘  

0 ’  1 

Figure 5.  The effect of pure saddle curvature (- K )  on the thickness h and the relative cross 
section A(z)/Ao of the upper monolayer. The broken line represents the undeformed state 
before deformation. In the complete model A. may also depend on K (see text). 

Solving for i and expanding to first order in K gives 

and 

z2 = ( 1  - *Kz2)z2. (23) 

The physical normal stress S(z, K )  in the deformed membrane may be expressed by 
a fictitious stress s(z, K )  through 

S(Z, K)dZ = s(z, K)dz (24) 

and s(z, K )  expanded to first order in K 

WK,  S(Z, K )  = S(Z, 0 )  + ___ 
aK 

where s(z, 0) = s(z). The use of s(z, K )  means that force per length is associated with 
mass per area rather than with length Ai. The energy surface density KK may now be 
replaced by 

K 

ls(z)i2Kdz + j j y  (z’ - z;)K’dK’dz + (KK)z;K. 
n 

A possible overall dilatation compensating part of the compression due to K i 0 is 
introduced here. It is taken to be proportional to (- K ) ,  so ‘that surfaces of inexten- 
sion are now at some f zn # 0. The last term corrects KK for the change of middle 
surface area due to the dilatation. The argument is easily generalized to include K > 0 
and compression. 

Obviously, with stress profiles of the type shown in figure 4 the first term of 
equation (26) is more negative than IcKfor pure saddle curvature (- K )  = r2 .  For an 
estimate of it, we assume the negative stress s(z) in the interior of the membrane to 
be uniformly 

s = -y /h ,  (27) 

where h is the height of one monolayer, i.e. half the membrane thickness, and y the 
tension at the oil-water interface. Expressing the surface tension by a &function, we 
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1654 W. Helfrich 

have for the first term of equation (26) 
+ h  1 (- y/h)i2Kdz + 2yh"ZK, 

- h  

which because of equation (23) becomes 
+ h  1 (-y/h)z2(1 - $z2K)Kdz + 2yh2(1 - $h2K)K 

- h  

- 4 h2K - 16 h4K2 - 3Y 1 S Y  

= IcK + R,K2. (29) 

The last line serves to identify the modulus IT: of Gaussian curvature and the contribution 
of the first term of equation (26) to the modulus R in front of K 2 .  With y = 50 dyn cm-' 
and h = 2nm one arrives at k- = 3 x lo-'' erg and R = -9  x 

For a more complete estimate of R, one may use a model of membrane elasticity 
introduced by Israelachvili et al. [15]. Starting from the expression 

ergcm2. 

for the Gibbs free energy of an amphiphilic molecule in a flat monolayer, where a is 
the molecular cross section and a, is its equilibrium value, they obtain for the 
stretching energy per unit area of monolayer 

The resulting theoretical stretching modulus of the bilayer, 47, agrees quite well with 
the values near 200dyn cm-' measured [16] for the biological model membranes listed 
above. On the basis of equation (31) it seems reasonable in the present context to use 
the Ansatz 

permitting a second contribution to R to be immediately obtained, i.e. 

Z2 = 3yh4, (33) 

from the z2K' term of equation (26). In the following we take the total modulus R to 
be the sum of R, and R,, so that 

R = -5yh4. (34) 
This may be regarded as a conservative formula, since the bending energy cannot rise 
if the constraint of inextension of the middle surface is lifted. 

The sole purpose of the present estimate is to show that it should be negative 
for electrically neutral biological model membranes and to obtain an idea of its 
probable magnitude. It may seem attractive to use the same Ansatz (26) to derive 
the bending rigidity. Unfortunately, we find this procedure to yield a negative value of 
K, which is not permissible and must be regarded as a warning against using any simple 
model uncritically. It may well be that the model of Israelachvili et al. [15] correctly 
describes uniform stretching and, as we assume, the stretching associated with Gaussian 
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Invited Lecture: Huts and saddles in lipid membranes 1655 

curvature, whereas it does not account for most of the energy of mean curvature. Its 
original version with &functions at fixed heights for pull and push gives a bending 
rigidity of the order of kgT.  

A negative R promotes the formation of highly curved saddles in a membrane. It 
also facilitates very high spherical curvature, but in the latter case Gaussian curvature 
is linked with mean curvature. We express the total elastic energy of a single saddle 
structure in an otherwise flat membrane (see figure 3) by the extremely simplifying 
Ansatz [ 171 

which omits the quartic energy terms associated with (cI + and (cl + c2)2cIc2 
whose moduli we cannot estimate. Here A ,  is the area of the central part with saddle 
curvature (- K )  = c2. The second term represents the bending energy of two sphere 
segments (curved discs), each of area A , ,  and mean curvature Hd = )(c, + c2) = c. 
It stands as an approximation for the energy of all four highs and lows belonging to 
the saddle. A reduction of the energy seems plausible, first, because a positive E also 
helps spherical curvature and, secondly, because on the far side of the extrema 
Id2 u/dr2 I may be made very small without costing much energy through the curvature 
resulting from the double oscillation of u on a circle around the saddle. (This has to 
do with the fact that even with u - Y in all directions, the curvature-elastic energy 
would diverge only logarithmically with the size of the system.) 

For the very high curvature c = l/h, which is about the maximum reached in the 
saddle before the onset of geometric constraints, we have, because of equations (34) 
and (35), 

E,,, = Rc4As + K(2C)2As, (35) 

(36) 
1 

h E,, = (- +yh2 + 4K) -j A, .  

Adopting such a cut-off is a primitive way of dealing with all the contributions to the 
elastic energy density that are of higher than quartic order in the curvatures. A more 
realistic cut-off may be defined in terms of a maximum relative decrease in area, X, 
of the interfaces. Moreover, it is possible to employ the full formula (31) instead of 
its expansion up to some power of K. An approximate computation along these lines, 
again under the constraint of fixed middle surface area, results for X = 0.5 in 
K = -0.35/h2 and a first term of E,,, that is about two-thirds of the value used in 
equation (36). The size A ,  of the saddle is expected to be smaller than the square of 
the membrane thickness if c l/h, since for geometric reasons saddle curvature 
should become weaker or mean curvature more pronounced as the sides of the saddle 
bend up and down. On the other hand, very small saddles should be unfavourable 
because of the energy of the boundary between the saddle proper and the rest of the 
saddle structure. (This could be described by the gradient terms of Mitov [13].) 

erg, gives for the 
energy equation (36) of the single saddle structure 

Inserting y = 50dyncm-’, h = 2nm, and K = 1 x 

E,,, = (- 1.3 x lO-’’erg + 4 x erg)As/4nm2. (37) 
The very crude formula predicts only a modest reduction by one-third of the energy 
of the saddle structure through the fourth-order term. However, stable deformations 
may be possible if we allow for many saddles and cooperativity among them. Regular 
arrays of saddles that seem energetically favourable at certain membrane configurations 
in the large are sketched in figure 6. Only one high or low per saddle is needed in the 
arrangement for the planar case. The most favourable configuration is probably a 
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S H S H S  

L S L S L  

(H I  (HI  

furrow L S L S L  

(H) (H) 

Figure 6.  Energetically favourable arrays of saddles for some membrane configurations in the 
large. Highs and lows in parentheses are thought to be weakly developed. 

large saddle, since the highs and lows between the small saddles need not be fully 
developed if the latter are properly arranged. A line of small saddles forming a furrow 
or ridge in the large may also be preferred as the saddle structures in a chain can have 
a lower symmetry than that of figure 3. It appears therefore at least conceivable that 
saddles in cooperation are strongly enough promoted in biological model membranes 
to be a physical reality. 

Membranes pervaded by saddles may look like a mattress or quilt. If concen- 
tration and cooperativity of the small saddles are large enough, the quilted membrane 
should tend to warp, preferring large saddles or furrows, and thus to increase the ratio 
of real to projected area. (An appreciable absorption of area by a planar array of 
closely packed saddles seems less likely.) The saddles might also form crystalline 
or hexatic superstructures. Depending on their arrangement, the bending rigidity of 
the membrane may be expected to increase or decrease. For now, we refrain from any 
further discussion of this most complex and speculative part of the model. It is clear 
that the high curvatures and small objects predicted are at the limit of applicability 
of continuum theory. New concepts may be needed to deal effectively with saddle 
structures if they prove to be real. 

A few years ago Beblik et al. [S] reported wiggles and knees in tubular phosphati- 
dylcholine vesicles which were too pronounced to be thermally excitable. In the light 
of the defect model just presented, it is tempting to ascribe these anomalies to the easy 
formation of furrows or saddles in the large. 

One may further suspect that the so-called lipidic particles [18] are related to 
saddle structures. Occurring typically in rows which often look like ridges or furrows, 
they are seen as peaks or complementary pits in freeze-fracture electron microscopy 
of multilayered lipid-water systems. Lipidic particles are usually interpreted as inverted 
micelles enclosed in a bilayer. They have been found only with lipids forming the 
inverse hexagonal besides the lamellar phase. The stress profile of those bilayers should 
be characterized by a strong pull in the region of the polar heads, in accordance with 
our model. Of the lipids listed above, some phosphatidylethanolamines are known to 
display the inverse hexagonal phase and lipidic particles [ 181. 
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5. Remarks on liquid crystals and conclusion 
Hats and saddles may also be envisaged in lyotropic and thermotropic smectic 

liquid crystals. In order to form three dimensional lattices they would have to be 
stacked, which implies a loss of translational entropy and raises problems of space 
filling. Both impediments could be overcome by using rather brittle layers that alone 
are unstable. Problems of the second kind could be alleviated by a slight tilt of the 
stacks with respect to the average layer normal, so that along any straight line normal 
to the layers there can be some relaxation between regions of compression and 
dilatation of the layers. The same idea is being used to explain smectic phases 
made of molecules that form SmA but not SmC (W. Helfrich, unpublished data). 
SmA and SmC are modulated smectic phases consisting of ribbons and ordered in 
two dimensions. The modulated smectic phases which we propose consist of rods 
and their order is three dimensional. We note that it may be difficult to find thermo- 
tropic smectics that form intrinsic saddles because an overlap of adjacent layers 
prevents stress profiles of the type shown in figure 4. Three dimensional arrays of 
'lipidic particles' in lamellar lipid-water systems have been observed by electron 
microscopy [ 181. 

The idea of hats and saddles in lipid membranes was developed in the hope of 
being able to cope with some properties of biological model membranes which cannot 
be understood in terms of our present simple picture of these bilayers. Although 
the saddle structures here proposed seem to be rather logical, they are not the only 
ones to produce locally strong Gaussian curvature. Electron microscopy offers the 
possibility of detecting these structures. In fact, Klosgen and Helfrich [19] obtained 
some first results which seem to reveal arrays of defects in single phosphatidylcholine 
bilayers. Regardless of whether the model of the quilted membrane will be confirmed, 
one may expect any system selected by nature to be complex in its behaviour. Only 
delicate systems are capable of responding to subtle influences. 

A photograph taken by Dr Beate Klosgen strongly encouraged me to talk and 
write about the tricky subject of cooperative saddles in membranes. 
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